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We discuss the role of both primary and secondary order patameters in a transition between two solid
phases. We show how microscopic distortions which appear at the transition can be calculated using
group-theoretical methods. We also show how the form of the coupling term in the Landau free energy
influences the behavior of secondary order parameters.

1 INTRODUCTION

The Landau theory (Landau and Lifshitz, 1980) forms the basis of a group-theoretical
description of phase transitions in crystalline solids. In this theory, we introduce an
order parameter associated with one of the irreducible representations (irreps) of the
space group of the crystal’s high-symmetry phase. The free energy of the crystal is
then expanded in powers of that order parameter. Possible values of the order
parameter at the minimum of the free energy determine the allowed space groups of
the low-symmetry phase. In the original Landau theory, the free energy is expanded
only to fourth degree and describes second order (continuous) phase transitions. In
the “extended” Landau theory, the free energy is expanded to arbitrarily high order
so that additional minima (and hence additional possible space groups of the
low-symmetry phase) are included in the results. The additional subgroups result
from first order (discontinuous) phase transitions.

Usually, in Landau theory, we only consider order parameters associated with a
single irrep. Generally, however, order parameters associated with different irreps are
coupled, causing both primary and secondary order parameters to be significant for
any given phase transition. A ferroelastic phase transition is called proper if the strain
transforms like the primary order parameter and is called improper if the strain
transforms like a secondary order parameter.

In this paper, we discuss the relationship between primary and secondary order
parameters, and we show how the form of the Landau free energy affects their
behavior across the phase transition. We also show how to calculate microscopic
distortions caused by these order parameters.

Many of our methods have been developed in a series of papers discussing
transitions in specific materials. The description of transitions where the primary
order parameter corresponds to an ordering process has been given for the grandite
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garnets (Hatch and Griffen, 1989), bromoform (Hatch and Stokes, 1990), MgSiO;
garnet (Hatch and Ghose, 1989a), leucite (Hatch, Ghose, and Stokes, 1990), and
titanite (Ghose ef al, 1990). In these papers, the specific ordering distributions for
the lower-symmetry phases are given as well as discussions of the secondary order
parameters, including strain. Displacive and/or rotational transitions have been
described for ilvaite (Ghose et al., 1989), A,BX, structures (Hatch, Stokes, Aleksan-
drov, and Misyul, 1989), anorthite (Hatch and Ghose, 1989b), BaTiO; (Hatch and
Stokes, 1989), langbeinites (Hatch, Artmann, and Boerio-Goates, 1990), and cristoba-
lite (Hatch and Ghose, 1990). Again, specific displacements and/or rotation modes
are given in these papers, as well as discussions of secondary order parameter
distortions. In this paper, we generalize and extend the symmetry approach taken in
these previous papers.

2 PRIMARY ORDER PARAMETER

2.1 Isotropy subgroups

Consider a crystal with space group symmetry G. Let a phase transition in this crystal
be driven by an order parameter 1 = (4, #,,...) associated with an irrep ', of G.
By “associated,” we mean that if an element g € G operates on 1, the components of n
transform in the following manner:

gn: = Z Dn(g)ij”lja
J

where D,(g) is the representative matrix of element g in irrep T',.

Above the transition, in the high-symmetry phase, the components of 1 are all
zero. As we pass through the phase transition, one or more compenents of n become
nonzero. The direction of n below the transition determines the space group symmetry
G, of the crystal there. This space group G, is an isotropy subgroup of G and consists
of all elements of g € G which satisfy gn =1, i,

= Z Dr](g)ijnj' (1

The order parameter which drives the phase transition and determines the symmetry
of the crystal below the transition is called the primary order parameter.

As an example, consider the case of G = Pm3m and I', = R{. [The notation for
irrep labels is from Miller and Love (1967) and Cracknell et al. (1979).] The irrep
R is three-dimensional, and therefore the order parameter n has three components.
Suppose the direction of the order parameter is 1 = (a, 4, 0) below the phase transition
(a is an arbitrary constant). Equation (1) becomes, in this case,

a= aD,,(g)“ + aD,,(g)lZ
a= aDu(g)Zl + aDn(g)ZZ
0= aDu(g)Bl + aD)](g)BZ'
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Using the selection of matrices given in Stokes and Hatch (1988), we find that the
only matrices D, in R; which satisfy these equations are

1 00 010 1 00
01 0)],{1 0 0],f0
0 01 0 01 0

The elements ge G which are mapped by R} onto these matrices constitute an
isotropy subgroup of G. In this case, we identify this subgroup to be G, = Imma with
basis vectors (1, 0, 1), (0, 2, 0), (1, 0, 1). A rather exhaustive list of isotropy subgroups of
the 230 space groups can be found in Stokes and Hatch (1988).

The subduced representation D, | G, is defined to be a representation of G, formed
from the matrix representatives D,(g) for g € G,. The subduction frcquency n is the
number of times the identity irrep of G, is contained in D, | G, and can be calculated
using the characters y,(g) of I',:

|G,,| 210
where |G, | is the number of elements in G,. (In practice, this sum is only taken over
the different matrices in D, | G,.) A subgroup G, of G is an isotropy subgroup if and
only if (1) the subduction frequency # is nonzero and (2) there exists no supergroup
of G, with the same subduction frequency. [These two conditions have been called
the subduction and chain criteria (Birman, 1978; Jari¢, 1981, 1982).] In the case of
G Pm3m, I, =R, and n=(a, 4,0), there are only four different matrices in
D, G, (given above), and the subduction frequency is equal to

=i3+1+1-1)=1.

2.2 Microscopic distortions

Consider some site A in a crystal undergoing a phase transition. We can determine
possible microscopic “distortions” in the crystal at that site (Hatch, Stokes, and
Putnam, 1987). These “distortions” can include atomic displacements (Hatch and
Stokes, 1989; Hatch and Ghose, 1989b; Ghose et al., 1989), molecular rotations
(Hatch, Stokes, Aleksandrov, and Misyul, 1989; Hatch, Artmann, and Boerio-Goates
1990; Hatch and Ghose, 1990), and site occupation probability (Hatch and Griffen
1984; Hatch and Stokes, 1990; Hatch and Ghose, 1989a; Ghose et al., 1990).

The elements of g € G which do not move the point at site 4 (i.e., g4 = A) form
a point group H called the site symmetry. The distortions that can occur at 4 are
associated with different irreps I'y of H. For example, atomic displacements are
associated with “vector representations” of H, i.e., irreps 'y whose basis functions
transform like components x, y, z of a polar vector. Similarly, molecular rotations are
associated with irreps I'y whose basis functions transform like components S, Sy,
S, of an axial vector. Site occupation probabilities are associated with the unit irrep
of H.

H

>
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Consider a particular distortion at 4 associated with some irrep I'y; of H. An irrep
T, of G can bring about this distortion at 4 if I'; | H contains T'y. This condition
can be restated in the following subduction frequency calculation:

1

"= Y. 0 9xu(g) 2

geH

where x,(g) is the character of the matrix D,(g) in the irrep I, of the space group G
and yy(g) is the character of the matrix Dy(g) in the irrep I'y of the point group H.
The summation is over elements g in G which form the point group H, and |H| is
the number of elements in H. If n is nonzero, then the irrep I, allows distortions at
site A associated with I'y. Furthermore, the subduction frequency n gives the
number of independent modes which involve such distortions at A. [Tables of these
subduction frequencies have been compiled (Putnam, 1985; Kovalev, 1986). See the
appendix of this paper for a discussion on the use of Kovalev’s tables. There are
special considerations in the cases where either I', or I'y is reducible (the physically
irreducible representation formed from a complex irrep and its complex conjugate).
We will not discuss that question here.]

As an example, consider displacements of an atom at the Wyckoff d position
(4,0, 0)in space group G = Pm3m (see Hahn, 1983). The site symmetry is H = 4/mmm.
There are 16 elements in H. They include (x, y, z), (x + 1, 3, 2), (x, z, y), etc. Each
of these operators keeps the point (3, 0, 0) fixed.

The vector representations of H = 4/mmm are I'y = A,, and I'y = E,. For the
irrep G, = RS, we find from Eq. (2) that n =0 for I'y = Ay, and n=1for 'y = E,.
Thus, the allowed displacements of atoms at the Wyckoff d position are those
associated with the irrep E, of 4/mmm.

A more precise determination of the distortion at 4 (such as the direction of the
displacement in the preceding example) can be made using projection operator
techniques. Let ¢ be a distortion at A associated with I'y;. We can project out basis
functions ; of T', using the following calculation:

Y = Z D;;(g)ijgd)- 3)

geG

Different values of the index j may give different sets of basis functions. The
maximum number of independent sets of basis functions that can be projected out
of ¢ is equal to the subduction frequency n calculated in Eq. (2). These independent
sets can be obtained by trying different values of j in Eq. (3).

Consider the effect of the operator g on ¢ in Eq. (3). In general, g¢ is a distortion
at some site g4 equivalent to 4. Thus, we have started with a distortion ¢ at a
particular site 4 and have produced basis functions that describe distortions at every
site equivalent to A throughout the crystal. It is useful to break up the sum in Eq.
(3) into parts that each describe a distortion at a particular site. For example, the
terms that describe the distortion at site A itself are those for which g€ H:

Yid) = 3, D,(9);99- )

geH
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(The notation y,(A4) simply means the part of ¥, which is nonzero at A and does
not mean that y; is a function of A. The symbol 4 is a label for the function, not a
coordinate argument of the function.) The terms that describe the distortion at some
other site g’A are those for which ge g'H.
VilgA)= Y. Dy9)9¢ =Y. Dy(gug Vi(A). ©)
geg'H k
The distortion described by the basis functions y; is the most general distortion
allowed by the irrep I',. The actual distortion which occurs at a particular phase
transition is given by a linear combination of these basis functions,

l// = Z ﬂiWu (6)

where #; are the components of the order parameter 1 below the transition.

As an example, consider again G = Pm3m, I',= R}, =(aa,0),and a displace-
ment of an atom at the Wyckoff d position (3, 0, 0). Using a displacement ¢ = (0, 1, 0)
and j = 1, we calculate from Eq. (4), using matrices from Stokes and Hatch (1988),

Y13, 0, 0) = (0, 8, 0),
V13, 0, 0) = (0, 0, 0), ™
V13, 0, 0) = (0, 0, 8).
From Eq. (6) we find the direction of the displacement of the atom to be
a(0, 8, 0) + a(0, 0, 0) + 0(0, 0, 8) = (0, 84, 0),

or in the [0107] direction. We denote this displacement by (0, §, 0), where § is some
small distance.

Similarly, we can find the displacement of the atoms at the other d points in the
crystal. There are three d points in the unit cell of Pm3m. Since the primitive unit
cell doubles in size in this phase transition, there are six of these points in the primitive
unit cell of G, = Imma, and it is sufficient to find the atomic displacement at each
of these six points. For example, the element ¢' = (J, x, z) in Pm3m takes a = (3, 0, 0)
into ¢g'a = (0, 3, 0). From Stokes and Hatch (1988), the matrix representative of (j, x, z)
is

Dy, x, z) =

SO =
—_0 O
O = o

From Egs. (7) and (5), we obtain
Y10, 3, 0) = (8, 0, 0),
Y100, 3,0 =(0,0,8),
¥5(0, 3, 0) = (0, 0, 0),
and from Eq. (6), we obtain
a8, 0, 0) + a(0, 0, 8) + 0(0, 0, 0) = (—8a, 0, 8a)
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Table 1 Atomic displacements in the phase transition
Pm3m — Imma at the Wyckoff position d associated with the
irrep R} of Pm3m. The local displacements are associated
with the irrep E, of the point group 4/mmm of the site.

Site r, I'y Atom Displacement
d R} E, &, 0,0) ©, 8, 0)
©, 3,0) (@, 0, 8)
©,0,3) ©, 8, 0)
&, 0,0) ©, 8, 0)
©, 1,0 ©, 0, 5)
©,0,%) 0, 5, 0)

which is a displacement in the [101] direction, denoted by (5,0, 8). The atomic
displacements at each of the six points are given in Table 1.

Let us expand this example by considering a specific crystalline structure: the
perovskite structure ABO; (for example, BaTiO,). The A atoms are at the Wyckoff
b position, the B atoms are at the Wyckoff a position, and the O atoms are at the
Wyckoff d position. Above, we found the atomic displacements at the d positions
(the O atoms). If we repeat the calculations for the @ and b points, we find that the irrep
R} does not allow any atomic displacements at those positions. The subduction
frequencies in Eq. (2) are zero for every vector representation of H for both the a and
b positions. The distortions described by the order parameter n = (4, 4, 0) associated
with the irrep RS allow only displacements of the O atoms.

The displacements of the O atoms shown in Table 1 describe a rotation as though
these six atoms formed a rigid molecule centered at the B atom. The site symmetry
of the Wyckoff a position is H = m3m. The basis functions of irrep T'y = Ty,
transform like components of an axial vector. We find, as expected, that at the
Wyckoff a position, the subduction frequency n calculated in Eq. (2) for T', = Ry
and 'y = Ty, is equal to 1. Starting with a distortion ¢ along the direction of an
axial vector, we obtain a distortion (6, 0, §) at (0, 0, 0). The six O atoms surrounding
the B atom rotate about an axis along the [101] direction. This is exactly equivalent
to the displacements of the O atoms shown in Table 1.

3 SECONDARY ORDER PARAMETERS

In a given phase transition G — G,, we must consider all distortions consistent with
the symmetry of G,. However, not all such distortions can be described by an order
parameter associated with the irrep I',. Some are described by order parameters
q = (4, q2,...) associated with other irreps I', of G. These are called secondary order
parameters.
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In the low-symmetry phase, a secondary order parameter q must satisfy, for every
element g € G,, the equation gq = g, or

qi = Z Dq(g)ijqj’ ®)

where D,(g) is the representative matrix of element g in irrep I';. The direction
of q which satisfies this equation also determines an isotropy subgroup G, of G. In
general, G, is a supergroup of G,. The action of ¢ does not break the symmetry of
G,. However, it does cause additional distortions in the crystal which cannot be
described by n alone.

If q satisfies Eq. (8), then the representation D, | G, must contain the identity
irrep of G, at least once. In other words, the subduction frequency,

1

TeN Y ) ©)

geGy

must be nonzero. All secondary order parameters must obey this equation. [The
determination of these secondary order parameters has been called the inverse
Landau problem (Ascher, 1977).]

Let us return to the example, G = Pm3m, I', =R, m=(a,4,0), and G, = Imma.
There are four irreps of G (besides R;) which give nonzero subduction frequencies.
These are listed in Table 2, along with the order parameter q and the isotropy
subgroup G, determined by that order parameter. In each case, G, is a supergroup
of Imma. Each of those four secondary order parameters onset at the phase transition
simultanecously with the primary order parameter n = (g, g, 0). Each order parameter
also has a unique contribution to the distortion of the crystal at the phase transition.
For example, the order parameter q = (a, g, 0) associated with irrep I', = R3 allows
atomic displacements at both the Wyckoff b and d positions. These are determined
in the same way as for the primary order parameter, using Eqgs. (2) through (6),
substituting g for » in every equation. The results are shown in Table 3.

For the phase transition Pm3m — Imma in the perovskite structure ABO;, Tables
1 and 3 give a complete list of all possible atomic displacements which can
accompany the phase transition. The displacements given in Table 1 are associated
with the primary order parameter, and those given in Table 3 are associated with
secondary order parameters.

Table 2 The secondary order parameters q for the phase
transition Pm3m — Imma, along with their isotropy subgroups

G,.

r, q G, Basis vectors

rf (a) Pm3m (1,0,0),(0, 1,0, (0, 0, 1)
ry (a, \/§[l) P4/mmm 0,0,1),(1,0,0), 0, 1,0)
rs 0,0,a) Cmmm (1,0, 1), (1,0, 7), (0, 1, 0)
R} (a, a, 0) Imma (1,0, 1), (0, 2,0, (1,0, 1)
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Table 3 Atomic displacements in the phase transition
Pm3m — Imma associated with irreps I', # R;. We list the
Wyckofl position (site), the irrep Iy of Pm3m, the irrep 'y
of the site. symmetry point group H, the atomic positions,
and the displacements.

Site I, Ty Atom Displacement
b R; Tlu (%s %’ %) (55 0; 6)
3,3 3) (6,0, 6)
d R E, 3,0,0 (0, 4,0
©, 4,0 @, 0, )
0,0,3) 0, 5, 0)
&, 0,0) (©, 8, 0)
©, %, 0 (3, 0, 8)
0,0, ©, 8, 0)

Components &;; of macroscopic strain may also be treated by the same methods
discussed above. These are always associated with irreps at the zone center (I irreps).
We find, for Pm3m, that irrep 'y has basis functions that transform like x> + y? — 222

and \/g(xz —y*. Thus, &, + ¢,, — 2¢,, and \/g(axx —¢,,) form a pair of basis
functions of I'j . We find in Table 2 that for this irrep, q = (a, —\/Ea) in the Imma
phase. Thus, a nonzero strain component,

(Sxx + Eyy — 2822) - \/g[\/g(sxx - gyy)] = _zsxx + 48yy - 282z’

appears at the phase transition.

Also, we find that irrep 'Y has basis functions that transform like xy, yz, xz.
Thus, &,,, &, &,, form a set of basis functions of I';. We find in Table 2 that for
this irrep, q = (0,0, @) in the Imma phase. Thus, a nonzero strain component &,,
appears at the phase transition. All of these strains that appear at the transition are
secondary order parameters. Consequently, this is an improper ferroelastic transition
(Wadhawan, 1982).

As one final example, consider ordering of atoms in a mixed crystal. This kind of
“distortion” is associated with the unit irrep of H. We want to find irreps I') such
that the subduction frequency in Eq. (9) is nonzero for the case where I'y; is a unit
irrep. For the phase transition we have been considering in ABOj;, this subduction
frequency is nonzero (n=1) only for the case I') = Iy and T'y=A,, at the
Wyckoff d position. Using Eqgs. (4) and (5), we find that the distortion is —d at
(+%,0,0) and (0,0, +4) and 25 at (0, £, 0), where & represents either an increase
or decrease in occupation probability. For example, consider the mixed crystal,
ABC;3, D3y, where the C and D atoms occupy the Wyckoff d position. The
probability that a particular d point is occupied by a C atom would be equal to x
above the transition (equal for all points). Below the transition, the probability would
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be equal' to x — d for 2 of the points and x + 26 for § of the points. This change in site
occupation would be a secondary order parameter in the phase transition to Imma.

4 LANDAU FREE ENERGY
4.1 Linear coupling

Consider a phase transition driven by a primary order parameter 1 and a secondary
order parameter q. The leading terms in the Landau free energy are

O=AT-T)ni+ns+ )+ Blgi+45+ ) —ClqPym) + g Po() + -+ T+,
(10)

where P(n) are mth degree homogeneous polynomials of #;, #,,... The lowest-
order term coupling n to q is linear in q. This will always occur when we obtain a
nonzero subduction frequency in Eq. (9) for the irrep T, ie., whenever q is a
secondary order parameter. [ We do not know of a rigorous proof of this statement,
but we have tested by computer its validity for all of the cases that occur among the
4777 irreps treated in Stokes and Hatch (1988).]

Minimizing ® with respect to q (0®/dq; = 0) and keeping only terms lowest order in
q, we obtain,

C

q; = 2B P{n). (11)
In the high-symmetry phase, both w4 and ¢ are zero. As we pass through the
transition, one or more components of 1 become nonzero. If one or more of the
polynomials P(n) also become nonzero, then the corresponding components g; of q
also become nonzero. In this case, the order parameters 1 and q are driven to nonzero
values at the same temperature. The linear coupling in the free energy guarantees that
if n goes nonzero, then q must go nonzero also. Distortions due to secondary order
parameters are not only allowed to be present at the phase transition, they are forced
to be present (although perhaps in a very small degree) by the linear coupling term
in the free energy. It is not optional to consider secondary order parameters in a
phase transition; it is mandatory, if we want to fully understand the distortions
accompanying the transition. [For discussions on linear coupling and secondary
order parameters, see Hatch and Stokes (1990), Hatch, Stokes, and Ghose (1990),
Hatch and Ghose (1989a), Levanyuk and Sannikov (1974), and Tolédano and
Tolédano (1987).]

If the transition is second order (continuous), Landau theory predicts that the
nonzero components of the primary order parameter 1 depend on temperature like
(T, — T)'/?, a function which has an infinite slope at the transition temperature T,.
[T, is not necessarily equal to the T which appears in Eq. (10). The coupling generally
affects the transition temperature.] Since Py(n) are mth degree homogeneous poly-
nomials, we see from Eq. (11) that the nonzero components of the secondary order
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parameter ¢ depend on temperature like (T, — T)™2, In the case of m > 2, this
function has a non-infinite slope at the transition. Thus, although both 1 and q become
nonzero at exactly the same temperature, the effect of n is much more pronounced
than that of ¢ near the transition. For example, in the phase transition Pm3m —
Imma, the atomic displacements in Table 1 (primary order parameter) would be
much more prominent than those in Table 3 (secondary order parameters). The degree
m of the polynomials P,(n) is called the faintness index.

Sometimes all of the polynomials P,(n) are zero for the particular direction of n
in G,, even though the subduction frequency of Eq. (9) is nonzero. In that case, it is
necessary to expand ® to higher order and find other terms linear in q where the
polynomials Pyn) do not vanish. This does not change any of the results above except
that the effective faintness index is then greater than m.

The m = 1 case occurs only when I', = ', i.e. when 1 and q are associated with
the same irrep. In this case, P(n) = n; and q = (C/2B)y near the transition. Both n
and q have the same temperature dependence. In this case, q is often called a
pseudo-primary order parameter. The coupling is called “bilinear,” and a number of
examples of such coupling have been studied (Dobrzynski and Przystawa, 1981;
Oleksy and Przystawa, 1983; Salje, 1985; Salje and Devarajan, 1986; Ghose, Tsuki-
mura, and Hatch, 1989).

Let us return again to the example, G = Pm3m and I, = Ry. There are ten
irreps of Pm3m which allow a coupling term linear in q. These are listed in Table
4. If we let n = (a, a, 0), we find that five of these terms vanish completely, leaving
nonzero coupling terms only for R} and the four irreps listed in Table 2.

For example, the coupling term for I' evaluated at m = (g, q,0) is equal to

aq, — \/5 a%q,. From Eq. (11), we see that the components of q are proportional to
the polynomials Py(n). The direction of q is thus written as (a, —\/5 a) so that the

Table 4 Lincar coupling terms in the Landau free energy for G = Pm3m
and I, = R;. In each case, we give the irrep I', and the degree m of the
polynomials P(n).

I, m Zi q;P{n)

Y 2 g+l

Ty 6 qinl —nind +nsnd —nsnd +nint — nin3

U3 2 q@n—nd—nd)+ /305 —nd)

Ty 4 gt} —n3) + aaneml — nd) + asnsna(nl — n3)

TS 2 quafis + qaliaity + datia

RY 9 alrinins — minan3 + n3m3ng — n3nang + n3ning — n3n,n3)
R; 3 q1M1M213

RY 5 qi/3nimamslnd — 1) + aaminans@nd — nd — nd)

Ry 1 a1y + 4211z + g3

RS

w

g3 — n3) + g2m200F — 03 + aansng — nd)
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components, @ and —\/ga have the same ratio as the coefficients, a*> and —./342
This result agrees with the direction of q given in Table 2 for I'S.

There is one important case we should consider separately: the unit irrep I"; which
is one-dimensional with every representative matrix D(g) equal to 1 (the 1 x 1
identity matrix). The Landau free energy for this case is given by

O =AT—-T)n}+n3+ ) =Bg+Byq> —Cqini +n5+ )+ .

The B; term did not appear in Eq. (10). This term is only allowed for the unit
irrep. Minimizing ® with respect to q, we obtain

B C
q= (2—31)('1% +h ).
Here, g has a nonzero value even when n = 0. Basis functions of the unit irrep
are invariant with respect to a/l symmetry operations g € G. Therefore q is allowed
to be nonzero in the high-symmetry phase and is not usually considered to be an
order parameter associated with the phase transition. However, because of the
coupling with m, a change in q does occur at the transition.

The volume of the crystal is an example of an order parameter associated with
I',. The volume is invariant under all symmetry operations ge G. At a continuous
phase transition, an extra contribution to the volume appears which is linear in
temperature (m = 2) causing the response function 8V/0T to be discontinuous at the
transition (Hatch, Artmann, and Boerio-Goates, 1990).

4.2 Nonlinear coupling

Consider the coupling of two order parameters, 1 and &, associated with irreps, T,
and I, respectively. In the Landau free energy, there always exists a term of the form,

i+ns+ )T+ &+

This term is nonlinear in both 1 and & If this term is strong enough (large negative
coefficient), it is possible for a first-order (discontinuous) phase transition to occur
where the effect of both n and & are prominent. (Holakovsky, 1973; Imry, 1975;
Gene et al., 1977; Gufan and Larin, 1980; Hatch and Stokes, 1990; Hatch, Ghose
and Stokes, 1990; Salje and Devarajan, 1986, Levanyuk and Sannikov, 1968; Larin,
1984; Redfern ef al., 1988.) In that case, n and & are both primary order parameters
even though they are associated with different irreps of G. This can happen whether
or not linear coupling terms also exist.

The symmetry G, of the crystal below the transition is determined by the direction
of both n and & and is simply the intersection of G, and G,. As an example consider
the case of G = Pm3m, T, = R{,and T, = X, withn = (a,, a;, 0) and § = (0, a,, a,).
The direction of n determines the isotropy subgroup G, = Imma with basis vectors
(1,0,1),(0,2,0),(1,0, 1) as given previously. The direction of § determines the isotropy
subgroup G, = P4/mmm with basis vectors (0, 0, 2), (2, 0, 0), (0, 1, 0). The intersection
of these two groups is G, = Cmem with basis vectors (2,0, 2), (2,0, 2), (0, 2, 0).
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parameter ¢ depend on temperature like (T, — T)™2, In the case of m > 2, this
function has a non-infinite slope at the transition. Thus, although both 1 and q become
nonzero at exactly the same temperature, the effect of n is much more pronounced
than that of ¢ near the transition. For example, in the phase transition Pm3m —
Imma, the atomic displacements in Table 1 (primary order parameter) would be
much more prominent than those in Table 3 (secondary order parameters). The degree
m of the polynomials P,(n) is called the faintness index.

Sometimes all of the polynomials P,(n) are zero for the particular direction of n
in G,, even though the subduction frequency of Eq. (9) is nonzero. In that case, it is
necessary to expand ® to higher order and find other terms linear in q where the
polynomials Pyn) do not vanish. This does not change any of the results above except
that the effective faintness index is then greater than m.

The m = 1 case occurs only when I', = ', i.e. when 1 and q are associated with
the same irrep. In this case, P(n) = n; and q = (C/2B)y near the transition. Both n
and q have the same temperature dependence. In this case, q is often called a
pseudo-primary order parameter. The coupling is called “bilinear,” and a number of
examples of such coupling have been studied (Dobrzynski and Przystawa, 1981;
Oleksy and Przystawa, 1983; Salje, 1985; Salje and Devarajan, 1986; Ghose, Tsuki-
mura, and Hatch, 1989).

Let us return again to the example, G = Pm3m and I, = Ry. There are ten
irreps of Pm3m which allow a coupling term linear in q. These are listed in Table
4. If we let n = (a, a, 0), we find that five of these terms vanish completely, leaving
nonzero coupling terms only for R} and the four irreps listed in Table 2.

For example, the coupling term for I' evaluated at m = (g, q,0) is equal to

aq, — \/5 a%q,. From Eq. (11), we see that the components of q are proportional to
the polynomials Py(n). The direction of q is thus written as (a, —\/5 a) so that the

Table 4 Lincar coupling terms in the Landau free energy for G = Pm3m
and I, = R;. In each case, we give the irrep I', and the degree m of the
polynomials P(n).

I, m Zi q;P{n)

Y 2 g+l

Ty 6 qinl —nind +nsnd —nsnd +nint — nin3

U3 2 q@n—nd—nd)+ /305 —nd)

Ty 4 gt} —n3) + aaneml — nd) + asnsna(nl — n3)

TS 2 quafis + qaliaity + datia

RY 9 alrinins — minan3 + n3m3ng — n3nang + n3ning — n3n,n3)
R; 3 q1M1M213

RY 5 qi/3nimamslnd — 1) + aaminans@nd — nd — nd)

Ry 1 a1y + 4211z + g3

RS

w

g3 — n3) + g2m200F — 03 + aansng — nd)
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Considering other irreps, we could make a table, similar to Tables 1 and 3, showing
all of the atomic displacements caused by both primary and secondary order
parameters in this phase transition.

APPENDIX USING THE TABLES OF KOVALEV

The most recent edition of Kovalev’s tables of irreps (Kovalev, 1986) includes the
subduction frequencies calculated by Eq. (2). As an example of how to use these tables,
consider atomic displacements in the hypothetical phase transition Pm3m — Imma in
the perovskite structure ABO;. The atoms are at Wyckoff positions a, b, and d. The
irreps associated with the primary and secondary order parameters in this transition
are ', ', RS, and R{. From Table 7 of Stokes and Hatch (1988), we find that
these irreps in the notation of Kovalev are K12T5, K12T7, K13T9, and K13T7,
respectively.

The site symmetry of Wyckoff positions a and b are both m3m. From the point
group character tables in Appendix 1 of Kovalev, we find that the vector irrep of
m3m is F,, =T10. In §15 of Kovalev, we find the subduction frequencies listed
for Pm3m for the various Wyckoff positions. We are looking for entries like
K12:T10 — 75, K12:T'10 — T7,K13:T'10 — T9, or K13:T'10 — T7. We find none of
these for Wyckoff position a, but for position b we find K13: ... I'1Q — T7. Thus for
position b, the subduction frequency is n = 1 for irrep K13T7 = RZ. Atomic displace-
ments associated with that irrep are allowed for atoms at Wyckoff position b, as
shown in Table 3 of this paper.

The site symmetry of Wyckoff position d is 4/mmm. From the point group character
tables in Appendix 1 of Kovalev, we find that the vector irreps of 4/mmm are 4,, = I'4
and E, = I'10. Thus, we are looking for entries like K12: I'4 — TS5, K12: T4 — T7,
K13:T4 —T9,K13: T4 — T7,K12: T'10 — TS5, K12: T'10 — T7, K13: T'10 — T9, or
K13:T10 — T7 for Wyckoff position d. We find the entry K13:...T'10 — T7 — T9
which means that the subduction frequency is n = 1 for both irreps K13T7 = RS
and K13T9 = R}, Atomic displacements asociated with those irreps are allowed
for atoms at Wyckoff position d, as shown in Table 3 of this paper.

As a second example of using Kovalev’s tables, consider the possible ordering of
atoms in this same phase transition. This kind of distortion is associated with the
unit irrep of the point group. In Appendix 1 of Kovalev, we find that the unit irrep
is always denoted I'l. Thus we are looking for entries like K12: 'l — TS5, K12: T'1 —
T7,K13:T1 — T9, or K13: 'l — T7. We find no entries like this for positions a and
b. For position ¢, we find the entry K12: 'l — T'5 which means that the subduction
frequency is n =1 for irrep K12T5 =T7. Atomic ordering associated with that
irrep is allowed for atoms at Wyckoff position d.
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